Influence of Electrode and Welding Parameters During Resistance Spot Welding of Hot-Stamped Ultra-High Strength Steel Sheets

Kevin Chan

D. C. Saha, S. S. Nayak, P. Penner, Y. Zhou, and A. P. Gerlich (University of Waterloo)

K. R. Chan (Huys Industries)
B. Gocke (Afyon Kocatepe University)
E. Biro (ArcelorMittal)
Introduction

Ref. ArcelorMittal
Properties of Hot-Stamped Steels

No spring-back
Complex geometries
Very high Strength (1500 MPa)

Hot-stamped “Boron steels”

Properties in-use
TS = 1400-1600 MPa
YS = 1000-1200 MPa
E% = 5 %
During the heat-treatment (900 to 950°C – 5 to 10 min) the coating is transformed into an alloyed intermetallic layer (Al, Fe, Si)
→ High Adhesion
→ High Roughness
→ No scale!

Ref. Autosteel.org
Motivations

• Narrow acceptable current range.
• Large alloying elements such as Mn and Cr make the welding condition difficult compared to conventional high-strength steel.
• Effect of Al-Si coating on weld properties.
• Poor electrode service life due to presence of Al-Si coating (25-30 µm).
• Most of the cases failure occurs as interfacial mode due to higher base metal strength.
Objectives

✓ To assess the contribution of a TiC/Ni multilayered coating on the life of copper electrodes (Paracap™) during resistance spot welding.

✓ To enhance the reliability of the welds by using modified electrodes.

✓ To investigate the effect of high current with short pulse times on the joint strength and microstructure.
Standard electrode (RWMA FB25-6mm)
Modified electrode (Paracap™)
Coated Paracap™ with internal cooling fins

- USIBOR® 1500P (1.5 mm)
- Al-Si Coated (25-30 µm)
- Heated to 930°C for 5 to 10 minutes, and cooled at a rate of >50°C/s
- Hardness 480-500 HV
Welding Parameters

Conditions examined using SORPAS

<table>
<thead>
<tr>
<th>Condition Number</th>
<th>Number of Pulses</th>
<th>Current (kA)</th>
<th>Impulse time (Cycles)</th>
<th>Force (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>12-7-7-7</td>
<td>4-8-8-8</td>
<td>900</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>12-7-7-7</td>
<td>2-8-8-8</td>
<td>900</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>12-7-7-7</td>
<td>4-10-10-10</td>
<td>900</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>12-8-8-8</td>
<td>2-10-10-10</td>
<td>900</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>12-7-7-7-7</td>
<td>2-10-10-10-10</td>
<td>900</td>
</tr>
</tbody>
</table>
Preliminary SORPAS® Outputs

<table>
<thead>
<tr>
<th>Condition Number</th>
<th>Nugget Diameter (mm)</th>
<th>Nugget Height (mm)</th>
<th>Expulsion Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.312</td>
<td>2.720</td>
<td>Electrode Interface</td>
</tr>
<tr>
<td>B</td>
<td>6.244</td>
<td>2.672</td>
<td>None</td>
</tr>
<tr>
<td>C</td>
<td>6.481</td>
<td>2.766</td>
<td>Electrode Interface</td>
</tr>
<tr>
<td>D</td>
<td>6.956</td>
<td>2.662</td>
<td>Faying Interface</td>
</tr>
<tr>
<td>E</td>
<td>6.463</td>
<td>2.670</td>
<td>Faying Interface</td>
</tr>
</tbody>
</table>

Selected for further experimental comparison
Experimental Comparison

Parameters Studied

<table>
<thead>
<tr>
<th>Schedule Number</th>
<th>Number of pulses</th>
<th>Current per pulse (kA)</th>
<th>Pulse time (Cycles)</th>
<th>Electrode Force (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>12-7-7-7-7</td>
<td>2-10-10-10-10</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>12-8-8-8</td>
<td>2-10-10-10</td>
<td>4.0</td>
</tr>
</tbody>
</table>

[Calculated Nugget]

[Thermal Cycles]
Effect of Electrodes

Welds produced using Schedule 1
Mechanical Properties

First 3 tests showed only interfacial fracture

2 tests showed interfacial fracture, and 1 nugget pullout
Tensile Strength after 300 Welds

Required Minimum Strength = 14 kN
Electrode Face Growth

- Uncoated
- Coated ParaCap

Electrode Face Diameter (mm) vs. Number of Welds
Electrode Thermal Softening

Cooling fins increased thermal gradients and suppressed softening

Vicker's Hardness (HV)

Position from contact surface (mm)

- Coated electrode
- Uncoated electrode
Comparison of Weld Schedules using Paracap™ Electrodes

- The average cooling rate was 208°C/s calculated for Schedule 2, while for Schedule 1 the cooling rate was 462°C/s
- How does this influence nugget hardness and fracture strength?
Slightly higher hardness for Schedule 1 is consistent with higher cooling rate.
Schedule 1 is slightly more refined, consistent with smaller martensite packet size reported with cooling rates $>400^\circ$C/s.
• Multivariant carbides (leaf-like and needle-like) are observed in both cases; some film-like retained austenite
• Presence of carbides indicates autotempering occurred
Microstructures Analysis – HAZ – OM

(a) Schedule 1

BM SCHAZ ICHAZ UCHAZ

(b) Schedule 2

BM SCHAZ ICHAZ UCHAZ
• Microstructures composed of fine grained martensite, and no significant difference between welding conditions
Results Summary – Tensile Tests

<table>
<thead>
<tr>
<th>Weld Parameters</th>
<th>Peak Load (kN)</th>
<th>Average Peak Load (kN)</th>
<th>Extension (mm)</th>
<th>Average Extension (mm)</th>
<th>Failure Mode</th>
<th>Nugget diameter (mm)</th>
<th>Average nugget diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule 1</td>
<td>10.86</td>
<td>16.43 ±4.7</td>
<td>2.6</td>
<td>2.75 ±0.19</td>
<td>IF</td>
<td>7.34</td>
<td>6.99 ±0.53</td>
</tr>
<tr>
<td></td>
<td>14.44</td>
<td></td>
<td>3</td>
<td></td>
<td>PO</td>
<td>7.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.76</td>
<td></td>
<td>2.6</td>
<td></td>
<td>IF</td>
<td>6.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.64</td>
<td></td>
<td>2.8</td>
<td></td>
<td>IF</td>
<td>7.20</td>
<td></td>
</tr>
<tr>
<td>Schedule 2</td>
<td>20.63</td>
<td>21.13 ±2.7</td>
<td>3.32</td>
<td>3.11 ±0.36</td>
<td>IF</td>
<td>7.74</td>
<td>7.28 ±0.48</td>
</tr>
<tr>
<td></td>
<td>23.51</td>
<td></td>
<td>2.8</td>
<td></td>
<td>IF</td>
<td>7.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.53</td>
<td></td>
<td>3.5</td>
<td></td>
<td>PO</td>
<td>7.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.86</td>
<td></td>
<td>2.8</td>
<td></td>
<td>IF</td>
<td>6.68</td>
<td></td>
</tr>
</tbody>
</table>

IF: interfacial; PO: pull-out
Conclusions

• Modified ParaCap™ electrodes provided higher life due to coating and enhanced cooling from internal fins
• It was possible to produce at least 300 welds using modified coated electrode without compromising weld strength
• A 4-pulse welding schedule using 12-8-8-8 kA provided slightly improved mechanical properties, even though weld nugget hardness was slightly reduced due to a reduced cooling rate, compared to a 5 pulse 12-7-7-7-7 kA profile
Thank you

Acknowledgements:

Questions & Comments?